On the Question of Effective Sample Size in Network Modeling: An Asymptotic Inquiry.
نویسندگان
چکیده
The modeling and analysis of networks and network data has seen an explosion of interest in recent years and represents an exciting direction for potential growth in statistics. Despite the already substantial amount of work done in this area to date by researchers from various disciplines, however, there remain many questions of a decidedly foundational nature - natural analogues of standard questions already posed and addressed in more classical areas of statistics - that have yet to even be posed, much less addressed. Here we raise and consider one such question in connection with network modeling. Specifically, we ask, "Given an observed network, what is the sample size?" Using simple, illustrative examples from the class of exponential random graph models, we show that the answer to this question can very much depend on basic properties of the networks expected under the model, as the number of vertices nV in the network grows. In particular, adopting the (asymptotic) scaling of the variance of the maximum likelihood parameter estimates as a notion of effective sample size, say neff, we show that whether the networks are sparse or not under our model (i.e., having relatively few or many edges between vertices, respectively) is sufficient to yield an order of magnitude difference in neff, from O(nV ) to [Formula: see text]. We then explore some practical implications of this result, using both simulation and data on food-sharing from Lamalera, Indonesia.
منابع مشابه
An Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling
In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...
متن کاملOptimum Block Size in Separate Block Bootstrap to Estimate the Variance of Sample Mean for Lattice Data
The statistical analysis of spatial data is usually done under Gaussian assumption for the underlying random field model. When this assumption is not satisfied, block bootstrap methods can be used to analyze spatial data. One of the crucial problems in this setting is specifying the block sizes. In this paper, we present asymptotic optimal block size for separate block bootstrap to estimate the...
متن کاملThe Research-Engaged School: The Development and Test of a Causal Model through an Exploratory Mixed Methods Design
The Research-Engaged School: The Development and Test of a Causal Model through an Exploratory Mixed Methods Design Sh. HosseinPour, Ph.D.[1] H.R. Zeinabadi, Ph.D. [2] The present study was undertaken to design and test a research-engaged school model using mixed methods design. In the qualitative and quantitative parts of the study, phenomenological strategy and structural equation mod...
متن کاملEstimation of the Active Network Size of Kermanian Males
Background: Estimation of the size of hidden and hard-to-reach sub-populations, such as drug-abusers, is a very important but difficult task. Network scale up (NSU) is one of the indirect size estimation techniques, which relies on the frequency of people belonging to a sub-population of interest among the social network of a random sample of the general population. In this study, we estimated ...
متن کاملBayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistical science : a review journal of the Institute of Mathematical Statistics
دوره 30 2 شماره
صفحات -
تاریخ انتشار 2015